Waveform Design, Channel Estimation and Multiple Access for UWB Radios

Georgios B. Giannakis

Dept. of Electrical & Computer Engineering
University of Minnesota

URL: http://spincom.ece.umn.edu

Acknowledgments: Liuqing Yang
ARL/CTA Grant No. DAAD 19-01-2-0011
NSF Grant No. EIA-0324864

Outline

- Optimal UWB pulse shapers
- Timing synchronization for UWB
- UWB channel estimation
- UWB multiple access
- Summary
Baseband UWB

![Graph showing baseband UWB signals: Gaussian pulse (GP), 1st derivative of GP, 2nd derivative of GP.](image)

Baseband UWB vs. FCC Mask

![Graph comparing baseband UWB to FCC mask.](image)

- **System 1**:
 - ✅ to maximize Tx power, G-monocycle
 - ✗ violates the FCC spectrum mask

- **System 2**:
 - ✅ to respect the FCC mask, G-monocycle
 - ✗ does not exploit the mask efficiently

SPinCOM University of Minnesota
Should we go Baseband ? Single band?

- **Pros:**
 - carrier-free \(\Rightarrow \) low-cost RF components
 - low duty-cycle \(\Rightarrow \) prolonged battery life
 - low power \(\Rightarrow \) covert communications

- **Cons:**
 - single band inflexible with narrowband interference (NBI)
 - power-inefficient use of FCC mask

Better Pulse-Shapers?

- **Gaussian monocycle:**
 - does NOT optimally exploit FCC mask
 - does NOT avoid interference with co-existing RF systems
 - does NOT facilitate Frequency-Hopping (FH) to gain LPI-LPD

- **Possible alternatives:**
 - analog filtering of the G-monocycle \(\Rightarrow \) lacks flexibility & repeatability
 - carrier-modulation of the G-monocycle \(\Rightarrow \) carrier frequency offset/jitter
Optimal Pulse-Shapers for UWB

Idea: digitally filter the antenna generated pulse \(g(t) \) [LYG’03]

\[
p(t) = \sum_{k=0}^{M-1} w[k] g(t - kT_0)
\]

Step 1: Select digital filter tap spacing \(T_0 \)
Step 2: Find \(M \) tap coefficients \(\{w[m]\}_{m=0}^{M-1} \), so that:

\[
|W(e^{2\pi f})| := \left| \sum_{m=0}^{M-1} w[m] e^{-2\pi fmT_0} \right| \approx \begin{cases}
P_d(f), & f \in [0, \frac{1}{2T_0}] \\
\mathcal{M}(f), & f \in \left[\frac{1}{2T_0}, +\infty\right]
\end{cases}
\]

\(P_d(f) \): desired FT magnitude
\(\mathcal{M}(f) \): normalized sqrt (ERIP FCC mask)

Algorithm and Implementation

- Solution: **Parks-McClellan** digital filter design algorithm
- Optimality: \(\{w[m]\}_{m=1}^{M} = \arg \min \{w[m]\}_{m=1}^{M} \{ \max_{F \in \mathcal{F}} |e(F)| \} \)

\(\mathcal{F} \in [0, 0.5] : \bigcup \) prescribed disjoint intervals

\(e(F) = \lambda(F) \left| W(e^{2\pi f}) - D \left(\frac{f}{f_0} \right) \right| : \) weighted error

- Implementation:
Single-Band UWB: Example I

- G-monocycle with $T_p = 0.37\text{ns}$
- Select $T_0 = 35.7\text{ps}$ to gain full control over 0 to 10.6GHz
- Design $\{w[m]\}_{m=0}^{M-1}$, $M=33$

![Graphs showing amplitude and frequency response for Example I](image)

Pulse Duration 1.3 ns

Maximum Power 0.91 mW

Optimal approximation over the entire bandwidth

High clock rate

Single-Band UWB: Example II

- G-monocycle with $T_p = 0.37\text{ns}$
- Select $T_0 = 73\text{ps}$ to exploit the symmetry
- Design $\{w[m]\}_{m=0}^{M-1}$, $M=33$

![Graphs showing amplitude and frequency response for Example II](image)

Pulse Duration 2.4 ns

Maximum Power 0.88 mW

Sub-optimal approximation over the entire bandwidth

Lower clock rate
Comparison I: Maximum Tx Power

- A & B: Gaussian monocycles
- C: pulse shaper in [Parr et al. '03]
- D & E: pulse shapers in [LYG'03]

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse duration (ns)</td>
<td>0.37</td>
<td>0.19</td>
<td>1.3</td>
<td>2.4</td>
<td>1.3</td>
</tr>
<tr>
<td>Tx power (µW)</td>
<td>0.506</td>
<td>3.43</td>
<td>250</td>
<td>880</td>
<td>910</td>
</tr>
</tbody>
</table>

Multi-Band UWB: Example

- G-Monocycle with $T_p = 0.37\text{ns}$
- Select $T_0 = 35.7\text{ps}$ to gain full control over 0~10.6GHz
- For the nth sub-band, design $\{w_n[m]\}_{m=0}^{M-1}$ such that:

$$
\sum_{m=0}^{M-1} w_n[m] e^{-2\pi f_m T_0} \approx \begin{cases}
0 & f \in [0, 3.1 + n \cdot \frac{7.5}{N}] \text{GHz} \\
\frac{P(D)}{P(R)} & f \in [3.1 + n \cdot \frac{7.5}{N}, 3.1 + (n + 1) \cdot \frac{7.5}{N}] \text{GHz} \\
0 & f \in [3.1 + (n + 1) \cdot \frac{7.5}{N}, 10.6] \text{GHz}
\end{cases}
$$

- Tradeoffs:
 - $T_0 \uparrow \Rightarrow$ complexity ↓, number of independent sub-bands ↓
 - number of sub-bands $\uparrow \Rightarrow$ complexity ↑, flexibility ↑
Carrier-Free Multi-Band UWB

- Attractive features:
 - Optimal FCC mask exploitation
 - Flexible NBI avoidance
 - Baseband FH

- Implementation:

![Diagram of Carrier-Free Multi-Band UWB implementation](image)

Comparison II: Average BER

- In the absence of NBI
- In the presence of NBI

Narrowband interference between 0.99GHz and 3.1 GHz, Power of NBI is 10 times AWGN variance
Timing Synchronization for UWB

\[v(t) = \sqrt{E} \sum_{n=-\infty}^{\infty} s((n/N_f)\Delta) p(t - nT_f - c(n)T_c) \]

\[r(t) = \sum_{i=0}^{L} a_i v(t - \tau_{i0} - \tau_0) + \text{noise} \]

- First arrival time \(\tau_0 \)
- Timing synchronization: finding \(\tau_0 \)
- **Acquisition**: coarse timing
- **Tracking**: fine timing

Prior Art

- Coarse bin reversal search in the absence of noise
 [Homier-Scholtz’02]
- Coded beacon sequence in the absence of multipath
 [Fleming’02]
- Ranging system requiring strongest path knowledge
 [Lee-Scholtz’02]
- Non-data aided timing for UWB in dense multipath
 [Yang-Tian-Giannakis’02]
- Data-aided Generalized Likelihood Ratio Tests (GLRT)
 [Tian-Giannakis’03]
Timing with a Clean Template (1)

- When multipath is absent but TH is present

\[T_s = N_f T_f \]

Need to search \(T_s / T_p \) (> 1,000) bins

Timing with a Clean Template (2)

- When multipath is also present

\[T_s = N_f T_f \]

✓ Tracking possible with fast TH [H-S'02,T-Y-G'02]

✗ Acquisition only with slow/no TH [Yang-Tian-GG'03, Tian-GG'03]

✗ Poor energy capture ⇒ synchronization performance affected
If we knew the channel …

⇒ Maximum Likelihood (ML) & sub-opt. Early-Late gate

Idea: Timing with “Dirty” Templates (TDT)!

“Dirty” Templates

- Aggregate pulse: \(p_R(t) = \sum_{l=0}^{L} \alpha_{l} r(t - \tau_{0,l}) \)

- Rx waveform: \(r(t) = \sqrt{E} \sum_{k=\infty}^{\infty} s(k) p_R(t - kT_s - \tau_0) + noise \)

- “Dirty” Templates:
 \[r(l \in [0, T_s)) \quad r(t + (k-1)T_s + \tau) \quad r(t + kT_s + \tau) \]
Our Key Observation

Symbol-rate samples:
\[x_k(\tau) = \int_0^{T_s} r(t + (k-1)T_s + \tau) r(t + kT_s + \tau) dt, \quad \forall \tau \in [0, T_s] \]

Cauchy-Schwartz's inequality (noise absent):
\[\|x_k(\tau)\|^2 \leq \int_0^{T_s} r^2(t + (k-1)T_s + \tau) dt \int_0^{T_s} r^2(t + kT_s + \tau) dt \]

Equality holds \(\forall k \) iff
\[r(t + (k-1)T_s + \tau) = \lambda r(t + kT_s + \tau), \quad \forall \tau \in [0, T_s) \iff \tau = 0 \]

Timing with “Dirty” Templates (TDT)

Theorem [Yang-GG'03,04]: Consistent timing offset estimation can be accomplished in the absence of ISI even when TH codes are present and the UWB multipath is unknown, using “dirty” Ts-long segments of the received waveform as follows:

\[t_0 = \arg \max_{\tau \in [0,T_s]} \frac{1}{K} \sum_{k=1}^{K} \left(\int_{-T_s/2}^{T_s/2} r(t + \tau) r(t + \tau - T_s) dt \right)^2 \]
The Beauty of the Training Pattern

Training Pattern: \(\ldots \, s, -s, -s, s, s, -s, -s, \ldots \)

\[x_k(r) = (-1)^k s^2 [E_B(r_0 - r) - E_A(r_0 - r)] + \xi(k) \]

- \(K^{-1} \sum_{k=1}^{K} x_k^2(r) \) converges faster to
 \[\mathbb{E}(x_k^2(r)) = s^4 [E_B(r_0 - r) - E_A(r_0 - r)]^2 + \sigma_k^2 \]

- \(K=1 \) pair suffices \(\Rightarrow \) rapid acquisition
- Enables multi-user TDT

Why is this result neat?

- A distinct criterion for timing synchronization:
 - Auto-correlation vs. Cross-correlation
 - Clean vs. Dirty templates and the noise-noise issue

- Features:
 - TDT with both training and blind modes
 - Simple integrate-and-dump operations
 - Acquisition and tracking at any desirable resolution!
 - With or without TH & With or without multipath
 - VCC implementation possible
TDT Acquisition: Blind Mode

- $N_f = 32$
- N_e uniform over $[0, N_f - 1]$

<table>
<thead>
<tr>
<th>Dirty template:</th>
<th>Clean $p(t)$ template:</th>
</tr>
</thead>
</table>

- Good energy capture \Rightarrow good performance
- Simple integrate-and-dump operations \Rightarrow low complexity

TDT Acquisition: Training Mode

- $N_f = 32$
- N_e uniform over $[0, N_f - 1]$

<table>
<thead>
<tr>
<th>Synchronization MSE:</th>
<th>Detection BER:</th>
</tr>
</thead>
</table>

- Data-aided TDT operational with $K=1$ \Rightarrow rapid acquisition
- Considerable BER improvement
TDT in Multi-User Settings

- Two interfering asynchronous users

Timing acquisition MSE:

- Rapid acquisition in ad hoc networks
- Operational without modification
- Improvement possible

BER performance:

- No timing acquisition
- Perfect timing
- With timing acquisition

Channel Estimation

- Needed for Rake reception

Q: Can we estimate the baseband-equivalent sampled channel?

- Pulse duration $T_p = 0.7ns$ \Rightarrow sampling rate 14.3-35.7GHz

 - Lottici et al '02 samples 10-25 times per pulse

A: Only for sub-band channels in "multi-band UWB"
Transmitted Reference (TR)

Tx: \(v(t) = p(t) + s \cdot p(t - T_f), \quad s = \{ \pm 1 \} \)

\[
\begin{array}{c}
\text{Pilot waveform} \\
\text{Modulated waveform}
\end{array}
\]

Rx: \(r(t) = h(t) + s \cdot h(t - T_f), \quad h(t) := \sum_{\tau=0}^{L} \alpha p(t - \tau) \)

\[
\begin{array}{c}
\text{Pilot waveform} \\
\text{Modulated waveform}
\end{array}
\]

Idea: Rx pilot waveform as correlator template [Hoctor-Tomlinson’02]

\[
\hat{s} = \text{sign} \left\{ \int r(t) r(t - T_f) dt \right\} = \text{sign} \left\{ s \int h^2(t) dt \right\} = s
\]

Pilot Waveform Assisted Modulation (PWAM)

Tx:

\[
\begin{array}{c}
\text{pilot waveforms} \\
\text{info. conveying waveforms}
\end{array}
\]

Rx:

\[
\begin{array}{c}
\text{Analog Delay Element} \\
\text{Analog Delay Element}
\end{array}
\]

- PWAM [Yang-GG’02]
 - Error performance similar to differential decoding
 - Low complexity (just frame-rate integrate-and-dump)
 - Performance-rate tradeoffs, and robustness to timing jitter
PWAM Optimality

Theorem [Yang-GG’02]: Given T_f, N_f, and channel coherence time τ_e, equi-spaced pilot waveforms every $\lfloor \tau_e/T_f \rfloor$ pulses, and equi-powered with $E_{\text{avg}} [N_f/(\sqrt{\tau_e/T_f} - N_f + \sqrt{N_f})]$ achieve the channel CRLB and maximize average capacity.

PWAM Relatives

- **Transmitted reference (TR) signaling [Hoctor-Tomlinson’02, Choi-Stark’02]:**

 When $N = 2N_f$, PWAM yields:

 - Optimal number of pilot waveforms: $N_p = N_f$
 - Optimal energy allocation factor: $\alpha = \frac{1}{2}$

 \Rightarrow **TR is optimal only when $N = 2N_f$**

- **Pilot symbol assisted modulation (PSAM) [Cavers’91, Ohno-Giannakis’02]:**

 - discrete-time channel taps vs. continuous-time channel waveform (pulse-rate sampling vs. frame-rate integrate-and-dump)
 - narrowband with inter-symbol interference (ISI) vs. UWB without ISI
 - one digital pilot symbol vs. multiple analog pilot pulses across frames
Placement of Pilot Waveforms

- PWAM with distributed pilot waveforms:

- Transmitted reference: special case of PWAM when \(N = 2N_f \)

- Preamble:

Equi-SNR (ES-)PWAM

- Nominal SNR:
 \[\rho = \frac{N_f E_s}{N \sigma^2} \]

- Information SNR:
 \[\rho_i = \frac{E_s}{N_i \sigma^2} = \frac{N}{N_s N_f} \alpha \rho \]

- Pilot SNR:
 \[\rho_p = \frac{N_f E_p}{N_p \sigma^2} = \frac{N}{N_p} (1 - \alpha) \rho \]

- Facilitates operation of nonlinear power amplifiers
- Reduces interference to existing NB systems
Average Capacity and Performance

- Average capacity
- BER in peer-to-peer and multiple access

TR vs. PWAM vs. Preamble

At high SNR: 250 Kbps (TR) 495 Kbps (N=100) 499 Kbps (N=500)

Types of channels:
- Quasi-static: PWAM outperforms TR, and offers higher rate
- Time-varying: PWAM outperforms preamble
Baseband Modulation for UWB

- Pulse Position Modulation (PPM)
- Pulse Amplitude Modulation (PAM)

Each symbol is conveyed by N_f pulses $p(t)$

$$T_s = N_f T_f$$

UWB Multiple Access

- Time Hopping (TH):
 $$v_n(t) = \sqrt{E_a} \sum_{n=\infty}^{\infty} s_n((n/N_f))p(t - nT_f - e_0(n)T_e) \quad [Scholtz '93]$$

- Direct Sequence (DS):
 $$v_n(t) = \sqrt{E_a} \sum_{n=-\infty}^{\infty} s_n((n/N_f))e_0(n)p(t - nT_f) \quad [Foerster '03]$$

DS code for User A: 1 1 1 1

DS code for User B: 1 -1 1 -1
Baseband UWB-MA

- Tx signal of user u:
 $$v_u(t) = \sqrt{\xi_u/N_f} \sum_{k=0}^{\infty} s_u((k/N_f))c_0(k)p(t - kT_f - c_0^h(k)T_c)$$

- Existing codes:
 - TH-UWB: $c_0^h(k) \in [0, [T_f/T_c]]$, and $c_0(k) = 1$, $\forall k$
 - DS-UWB: $c_0(k) \in \{\pm 1\}$, $\sum_{k=0}^{N_f-1} c_0^2(k) = N_f$, and $c_0^h(k) = 0$, $\forall k$

- Features:
 - ✓ constant modulus
 - ✓ not flexible in handling narrow-band interference (NBI)
 - ✓ not flexible in handling multi-user interference (MUI)

Baseband Single/Multi-Carrier UWB-MA

- $N_u = N_f$ real orthogonal subcarriers:
 - Set I with $f_{u} = (u + 0.5)/N_f$, $\forall u \in [0, N_f - 1]$
 $$[f_{u}]_k = \begin{cases} \sqrt{2} \cos(2\pi f_{u} k), & u = 0, \text{ or } u = \frac{N_f}{2} \\ \sqrt{2} \sin(2\pi f_{u} k), & u \in \left[\frac{N_f}{2}, N_f - 1\right] \end{cases}, \forall k \in [0, N_f - 1]$$
 - Set II with $f_{u} = u/N_f$, $\forall u \in [0, N_f - 1]$
 $$[f_{u}]_k = \begin{cases} \cos(2\pi f_{u} k), & u = 0, \text{ or } u = \frac{N_f}{2} \\ \sqrt{2} \cos(2\pi f_{u} k), & u \in \left[\frac{N_f}{2}, N_f - 1\right] \end{cases}, \forall k \in [0, N_f - 1]$$

- Baseband single- and multi-carrier (SC/MC) user codes:
 $$c_u = \sum_{k=1}^{N_f-1} [c_u^{(\phi)}]_k f_k$$

- $\{c_u^{(\phi)}\}_{\phi=0}^{N_f-1}$ spreading codes
 - ✓ generally MC; SC if $c_0^{(\phi)} = c_0$, $\forall u$
Multi-Band Transmission

- Discrete cos/sin functions \Rightarrow DCT implementation & one RF chain!
- Digital carriers \Rightarrow flexibility in handling NBI
- Multiband transmission full multipath diversity even with SC!

Discrete cos/sin functions \Rightarrow DCT implementation & one RF chain!
- Digital carriers \Rightarrow flexibility in handling NBI
- Multiband transmission full multipath diversity even with SC!

MC-UWB vs. DS-UWB

- $\tau_L = 90\text{ns}$, $T_f = 24\text{ns} \nLeftarrow$ IFI
- $L_R = 2$, $N_f = 32$, $T_R \approx 1.0\text{ns}$
- ISI avoided by:
 - zero-padding (ZP)
 - cyclic-prefix (CP)
- Saleh-Valenzuela Channel Model
 $$\left(\frac{1}{\lambda}, \frac{1}{\lambda}, \Gamma, \gamma\right) = (2, 0.5, 30, 5)\text{ns}$$
- Benchmarks generated using MRC (in the absence of IFI)

<table>
<thead>
<tr>
<th></th>
<th>MC-UWB</th>
<th>DS-UWB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code-indep</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
</tbody>
</table>
CP vs. ZP

- CP for ISI removal, MF-RAKE
- ZP for ISI removal, MF-RAKE

- MC > SC ≈ DS > MC’
- MC > DS > MC’ ≈ SC

> MC-UWB achieves maximum diversity AND maximum coding gains

Comparison: Multiple Access

- CP for ISI removal, MF-RAKE

Dotted curves (low load):
- $N_d = 1$

Solid curves (medium load):
- $N_d = N_f/2 + 1 = 17$

> SC-UWB achieves better MA performance with simple MF-RAKE

NBI and AWGN

- MC-UWB enables user-independent performance
- MC-UWB yields best BER
- SC-UWB similar to DS-UWB

![Graph showing BER performance with NBI and AWGN](image)

NBI and Multipath

- MC-UWB: user-independent performance
- MC-UWB outperforms DS-UWB

![Graph showing BER performance with NBI and Multipath](image)
Summary

- Optimal UWB pulse shapers:
 - Dynamic narrowband interference avoidance
 - Single-band or multi-band
 - Time-hopping and/or frequency-hopping

- Synchronization for UWB communications:
 - In the presence/absence of TH and/or multipath
 - Rapid acquisition with low complexity and good performance
 - Data-aided or blind, single-user or multi-user settings

- UWB channel estimation
 - Transmitted Reference (TR)
 - Optimal Pilot Waveform Assisted Modulation (PWAM)

- Baseband UWB radios
 - Baseband SC/MC codes for multiple access
 - Unifying model for comparison in the presence of NBI