A Dual-Mode Architecture for a Phased-Array Receiver Based on Injection-Locking in 0.13-μm CMOS

Satwik Patnaik, Narasimha Lanka, Ramesh Harjani

University of Minnesota
Outline

• Introduction
 – Phased array communication

• Motivation and proposed architecture
 – Motivation & previous architectures
 – Proposed dual-mode architecture
 – Block-level circuit design

• Measurement results
 – ILO performance
 – Radiation patterns & cross-channel leakage

• Conclusions
Phased Arrays and Frequencies

Frequency of our design

MILITARY, AEROSPACE

Cellular

0.9 1.8 2.4 5.8

(Hz)

WirelessHD

24 60 77

Automotive Radar

Satcom

© 2009 IEEE International Solid-State Circuits Conference

© 2009 IEEE
Phased Arrays: Theory

- Array of antennas → broadside directive beam
- Progressive phase-shift → agile directive beam

\[\theta = \sin^{-1}\left(\frac{\lambda \phi}{2\pi d}\right) \]
Outline

• Introduction
 – Phased array communication

• Motivation and proposed architecture
 – Motivation & previous architectures
 – Proposed dual-mode architecture
 – Block-level circuit design

• Measurement results
 – ILO performance
 – Radiation patterns & cross-channel leakage

• Conclusions
Previous Architectures for Phased Arrays

- Multiple VGAs → power
- VGAs at RF
 → Power hungry
- Prone to mismatch

- Removes need for mixer
- Limited scalability
 - Frequency & elements
- Phase range limited

Paramesh et. al, ISSCC’05

Krishnaswamy et. al, ISSCC’07
Previous Architectures (cont.)

- **Large number of ADCs**
 - \(\# \text{ADCs} = \# \text{elements} \)
 - Significant power, area
- **Dynamic range issues**

- **RF phase-shifting**
 - Challenge in silicon
- **Reduced linearity**
 - Needed for LNA, mixer…

Digital beam-forming

RF-phase shifting
Phased Arrays in Silicon

• Previously, phased arrays designed in III-V
 – f_T, f_{max} used to be better than CMOS
 – High power handling capability

• Today CMOS and BiCMOS have f_T, f_{max} of 200+ GHz

• Benefits of designing phased arrays in silicon
 – Capability of handling mm-wave frequencies
 – Significant digital post-processing possible at low “cost”
 – High level of integration possible
 • 8-element and 16-element systems already demonstrated
 – Lower wafer costs than III-V technologies
 – Better yields, less variability
Injection-Locked Oscillators (ILOs)

- Frequency synchronization of an oscillator by applying an external signal is *injection locking*
- Steady state frequency of oscillator is ω_{inj}
 - ω_{inj} should be within lock-range of ILO
- Phase noise of injection signal \rightarrow phase noise of ILO

Natural Frequency

$$\omega_o = \frac{1}{\sqrt{LC}}$$
Steady-State Phase in ILO

Adler’s equation for ILOs

\[
\frac{d\phi(t)}{dt} = (\omega_0 - \omega_{inj}) - \omega_L \sin[\phi(t)]
\]

\[
\omega_L = \frac{\omega_0}{2Q} \left(\frac{I_{inj}}{I_{osc}} \right)
\]

Constant phase shift generated at steady-state

\[
(\angle V_{ILO} - \angle V_{inj}) = \phi_{ss} = \sin^{-1} \left(\frac{\omega_0 - \omega_{inj}}{\omega_L} \right)
\]

\[\phi(t) = (\angle V_{ILO} - \angle V_{inj})\]
ILOs in Phased Array Systems

- Injection-locking used before in phased arrays
 - Injection signal applied through antenna coupling
 - Weak injection \rightarrow low lock range \rightarrow ILO may be unlocked
- Phase generated by varying end-element frequencies

 (Technique not viable for integrated systems in CMOS)
Proposed Architecture

- ILO creates phase between injected and output signal
 - Can be used as a phase generation mechanism

- VCO natural frequency (ω_0) controls output phase
 - Phase-frequency relationship \rightarrow non-linear
 - Good frequency resolution \rightarrow good phase resolution
Architecture-I: Fully Flexible

Advantages
- Independent phase control
 - Arbitrary radiation patterns
 - Place nulls in jammer directions
- 2-D phased arrays possible

Disadvantages
- Requires extensive injection signal routing
- Needs look-up table
 - Oscillators $\omega_1, \omega_2, \omega_3, \ldots$
Advantages

- Cascade ILO approach
 - Natural beamforming
- Easier phase control
 - All oscillators → same ω_0
- Independent of ω_0 of first ILO
- 2-D phased arrays possible

Disadvantages

- Arbitrary radiation patterns not possible
Advantages of Dual-Mode Architecture

- ILOs inherently amplify the injection signal
 - And generate the required phase
 - Gain obtained more efficiently with regeneration

- ILOs are naturally high frequency blocks
 - Can operate very close to f_T

- Excellent oscillator frequency matching
 - Inductors and capacitors \rightarrow better matching

- Phase control can be made virtually continuous
 - Analog or digital capacitor / varactor control

- Easy to integrate both architectures in single chip
Prototype: ILO Circuit Block

- **Frequency control**
 - 4-bit MIM cap control
 - Coarse tuning
 - Analog control for varactor
 - Fine tuning

- **Independent control for G_m-cell and oscillator bias**
 - Variable lock-range

- **ILO occupied most area**
 - Differential inductors reduce area and improve performance
Prototype: G_m-boosted Mixer

- **Gilbert cell mixer**
 - Uses RC-load
 - g_m-boosting to improve gain

- **Common-gate buffer**
 - Allows RF inputs to match 50Ω

![gm-boosted mixer]

![Common-gate Buffer (50Ω)]
Outline

• Introduction
 – Phased array communication

• Motivation and proposed architecture
 – Motivation & previous architectures
 – Proposed dual-mode architecture
 – Block-level circuit design

• Measurement results
 – ILO performance
 – Radiation patterns & cross-channel leakage

• Conclusions
Measurements: Oscillator Tuning

- Excellent frequency matching attained
- Across 3 different chips, max. variation: 52MHz
- Within chip, max. variation: 20 MHz (<1% variation)
- Mismatch can be nulled out via varactor control
- Binary MSB cap mismatch → smaller mid-band step
Measurements: ILO

- Need enough lock-range for good frequency control
 - Large lock range → better phase control
- Lock-range mismatch → phase mismatch
 - Primary factor → injection current mismatch
Measurements: RF Input Matching

- Common-gate buffer used to match input to 50Ω
- S11 mismatch due to
 - Bond-wire length mismatch
 - External baluns also affect S11 mismatch
Test Setup: Radiation Pattern

- Simulates effect of antenna array
- Significant λ (2.4GHz) \rightarrow required T-line phase shifters
 - Measured radiation pattern using discrete phase shifters
- IF output (8MHz) measured on spectrum analyzer
- One of the four channels showed low gain (Channel-4)
 - Mixer-summer connection problem?
Radiation Patterns: Fully Flexible

- Measured 2-channel and 3-channel radiation patterns
- Excellent matching between theory and measurements

\(\theta = 0^\circ \)
- Peak-to-null: 19.1dB
- 16.1dB

\(\theta = -30^\circ \)
- Peak-to-null: 25.2dB

\(\theta = 90^\circ \)
- Peak-to-null: 21.4dB

© 2009 IEEE International Solid-State Circuits Conference
© 2009 IEEE
Radiation Patterns: Meander-Line

- Measured 2-channel and 3-channel radiation patterns
- Excellent matching between theory and measurements
- More consistent nulls \leftrightarrow same ω_0
Measurements: Cross-Channel Leakage

- **Test setup: no injection**
 - Four free-running VCOs
 - Different ω_0

- **LO signal normally large**
 - Signal leakage affects other channels

- **Channel isolation: 26.78dB**
 - RF lines for OSC-1 and OSC-2 close on PCB

- **Spur due to LO pulling**
 - Will not occur in normal operation (same ω_{inj})
Summary of Measured Results

Receiver Performance

<table>
<thead>
<tr>
<th></th>
<th>2-channel</th>
<th>3-channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receiver Gain</td>
<td>17 dB</td>
<td>20 dB</td>
</tr>
<tr>
<td>SNR Improvement</td>
<td>2-channel</td>
<td>6 dB</td>
</tr>
<tr>
<td></td>
<td>3-channel</td>
<td>9 dB</td>
</tr>
<tr>
<td>RF Frequency</td>
<td>2.4 GHz</td>
<td></td>
</tr>
<tr>
<td>IF Frequency</td>
<td>8 MHz</td>
<td></td>
</tr>
<tr>
<td>IF-amplitude error across channels</td>
<td>±1 dB</td>
<td></td>
</tr>
<tr>
<td>Suppression from Null Direction</td>
<td>>25 dB</td>
<td></td>
</tr>
</tbody>
</table>

Power Dissipation

<table>
<thead>
<tr>
<th>Component</th>
<th>Power Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO Core</td>
<td>2.67 mW (×4)</td>
</tr>
<tr>
<td>LO Buffer + G_m-Cell</td>
<td>4.26 mW (×4)</td>
</tr>
<tr>
<td>Downconversion Mixer</td>
<td>2.56 mW (×4)</td>
</tr>
<tr>
<td>Summer (Σ)</td>
<td>4.15 mW</td>
</tr>
<tr>
<td>Total Power Consumption</td>
<td>42.11 mW</td>
</tr>
<tr>
<td>(w/o bias & matching circuits)</td>
<td>(10.53 mW/ch)</td>
</tr>
</tbody>
</table>
Comparison to Previous Designs

<table>
<thead>
<tr>
<th></th>
<th>Area (mm²)</th>
<th>Power (mW)</th>
<th>Freq (GHz)</th>
<th>Null Suppression</th>
</tr>
</thead>
<tbody>
<tr>
<td>This work</td>
<td>1.44</td>
<td>42</td>
<td>2.4</td>
<td>16.1-25.2 dB</td>
</tr>
<tr>
<td>Receiver in [a]</td>
<td>3.36**</td>
<td>210</td>
<td>(3X)*</td>
<td>24</td>
</tr>
<tr>
<td>[b]</td>
<td>2.62</td>
<td>84</td>
<td>(2X)*</td>
<td>5</td>
</tr>
</tbody>
</table>

[a] Krishnaswamy et al., ISSCC’07
[b] Paramesh et al., ISSCC’05
* Normalized for PLL and/or LNA
** Includes PLL area
Conclusions

• Introduced two new architectures for phased arrays
 – Both architectures based on injection-locking
 – Both architectures integrated into one chip (dual mode)

• Both architectures extendable to 2-D phased arrays
 – Effortless phase control with meander-line for 1-D & 2-D

• Compact & low power
 – Lowest power phased array receiver reported
 – Area comparable to lowest area receiver

• Measured radiation patterns show excellent matching with theoretical predictions

• Easily scalable in both frequency & # of elements
For additional multimedia material: See http://www.isscc.org